Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell signaling promotes axonal regeneration.
نویسندگان
چکیده
Low-density lipoprotein receptors (LRPs) are present extensively on cells outside of the nervous system and classically exert roles in lipoprotein metabolism. It has been reported recently that LRP1 activation could phosphorylate the neurotrophin receptor TrkA in PC12 cells and increase neurite outgrowth from developing cerebellar granule cells. These intriguing findings led us to explore the hypothesis that LRP1 activation would activate canonical neurotrophic factor signaling in adult neurons and promote axonal regeneration after spinal cord injury. We now find that treatment of adult rat dorsal root ganglion neurons in vitro with LRP1 agonists (the receptor binding domain of α-2-macroglobulin or the hemopexin domain of matrix metalloproteinase 9) induces TrkC, Akt, and ERK activation; significantly increases neurite outgrowth (p < 0.01); and overcomes myelin inhibition (p < 0.05). These effects require Src family kinase activation, a classic LRP1-mediated Trk transactivator. Moreover, intrathecal infusions of LRP1 agonists significantly enhance sensory axonal sprouting and regeneration after spinal cord injury in rats compared with control-infused animals (p < 0.05). A significant role is established for lipoprotein receptors in sprouting and regeneration after CNS injury, identifying a novel class of therapeutic targets to explore for traumatic neurological disorders.
منابع مشابه
Urokinase-type Plasminogen Activator (uPA) Binding to the uPA Receptor (uPAR) Promotes Axonal Regeneration in the Central Nervous System.
Axonal injury is a common cause of neurological dysfunction. Unfortunately, in contrast to axons from the peripheral nervous system, the limited capacity of regeneration of central nervous system (CNS) axons is a major obstacle for functional recovery in patients suffering neurological diseases that involve the subcortical white matter. Urokinase-type plasminogen activator (uPA) is a serine pro...
متن کاملLow-Density Lipoprotein Receptor Related protein-1 (LRP1)-Dependent Cell Signaling Promotes Neurotrophic Activity in Embryonic Sensory Neurons
Developing sensory neurons require neurotrophic support for survival, neurite outgrowth and myelination. The low-density lipoprotein receptor-related protein-1 (LRP1) transactivates Trk receptors and thereby functions as a putative neurotrophin. Herein, we show that LRP1 is abundantly expressed in developing dorsal root ganglia (DRG) and that LRP1-dependent cell signaling supports survival, neu...
متن کاملRoles of low-density lipoprotein receptor-related protein 1 in tumors
Low-density lipoprotein receptor-related protein 1 (LRP1, also known as CD91), a multifunctional endocytic and cell signaling receptor, is widely expressed on the surface of multiple cell types such as hepatocytes, fibroblasts, neurons, astrocytes, macrophages, smooth muscle cells, and malignant cells. Emerging in vitro and in vivo evidence demonstrates that LRP1 is critically involved in many ...
متن کاملLow-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis
Low-density lipoprotein receptor-related protein-1 (LRP1) plays multifunctional roles in lipid homeostasis, signaling transduction, and endocytosis. It has been recognized as an endocytic receptor for many ligands and is involved in the signaling pathways of many growth factors or cytokines. Dysregulation of LRP1-dependent signaling events contributes to the development of pathophysiologic proc...
متن کاملLow-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9.
The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor involved in the metabolism of various extracellular ligands, including proteinases, that play critical roles in tumor invasion. Although several studies have shown an increased expression of LRP1 in cancer cells, its function in tumor development and progression remains largely unclear. Here, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 288 37 شماره
صفحات -
تاریخ انتشار 2013